Java Programming

Arthur Hoskey, Ph.D. Farmingdale State College Computer Systems Department

- Classes, objects, methods and instance variables.
- Classes:
 - Declare a class
 - Create an object.
- Declare methods of a class to implement the class's behaviors.
- Declare instance variables of a class to implement the class's attributes.
- Object Methods:
 How to call an object

How to call an object's method to make that method perform its task.

 Difference: Instance variables Vs local var

Instance variables Vs local variables of a method.

- Constructor: How to use a constructor to ensure that an object's data is initialized when the object is created.
- Difference: Primitive Vs reference types.

- What is an object?
- Objects are just things in the real world.
- For example, people, animals, plants, cars, planes, buildings, computers and so on.
- Telephones, houses, traffic lights, microwave ovens, and water coolers are a few more examples of objects.

Object-Oriented Programming

- Objects all have attributes and exhibit behaviors.
- Attributes: size, shape, color, weight
- Behaviors:
 - A ball bounces, inflates and deflates
 - A baby cries, sleeps, crawls
 - A car accelerates, brakes, turns

Object-Oriented Programming

- Object-oriented design models software in terms similar to those that people use to describe real-world objects.
- Think of the problem domain and look for the things that are objects.

- When constructing a building what is the first thing that an architect will do?
- An architect creates a blueprint.
- What is a blueprint?
- A blueprint is a detailed description of what the building will look like after it is built.
- Similarly, a class definition is a blueprint of what an object will look like in memory when it is created.

- How would we go about modeling a car object?
- First create the blueprint.
- The blueprint in object-oriented programming is the class definition.

Here are some of the attributes and behaviors of a car.

Car Year Color Speed Accelerate Decelerate

What are the data types of the attributes?

© 2021 Arthur Hoskey. All rights reserved.

Color Key

Class Name

Attributes

Behaviors

Color Key Class Name Attributes

Behaviors

Car

Year – int

Color – String

Speed – int

Accelerate

Decelerate

What effect will the behaviors accelerate and decelerate have on the object?

Behaviors change the state of the object. Accelerate and Decelerate will change the speed.

Color Key Class Name Attributes Behaviors

Car

Year:int

Color:String

Speed:int

Accelerate – Increases speed

Decelerate – Decreases speed

Color Key Class Name Attributes

Behaviors

Car

Year:int

Color:String

Speed:int

Accelerate – Increases speed

Decelerate – Decreases speed

How do we model attributes and behaviors in a program?

Model in a Program Attributes → Variables Behaviors → Methods

Color Key Class Name Variables

Methods

Car

int Year;

String Color;

int Speed;

void Accelerate() { // method code... }

Void Decelerate() { // method code... }

- Write a class definition to model our car in a program.
- Create a class called "Car" that we can use to model a car.
- Attributes are represented by variables.Behaviors are represented by methods.


```
public class Car
{
    // Attributes
    // Fill in the attributes here
    // Behaviors
    // Behaviors
    // Fill in the behaviors here
```

 Everything that is part of the class will be between the braces.

Sample Class Definition

ł

}

// Attributes
private int year;
private int speed;
private String color;

Attributes should be declared as member variables of the class

// Behaviors
Fill in the behaviors here

Sample Class Definition

// Attributes
private int year;
private int speed;
private String color;

Behaviors should be defined as member methods of the class

// Behaviors
public void Accelerate() { Code to accelerate }
public void Decelerate() { Code to decelerate }

Sample Class Definition

}

}

// Attributes
private int year;
private int speed;
private String color;

```
// Behaviors
public void Accelerate() {
    speed = speed +10;
}
public void Decelerate() {
    speed = speed - 10;
```

Accelerate will increase the speed by adding to the speed member variable. This changes the state of the object.

Sample Class Definition

 What does the *private* keyword that precedes each class variable name mean?

- We cannot see the inner workings of an object from the outside
- For example:
 - We do not see the engine of a car from the outside
 - We do not see the inner mechanisms of a vending machine from the outside

Vending Machine	
	Water
	Juice
	Soda

The inside mechanisms of the vending machine are not visible from the outside

Access Modifiers

- What we can see from the outside is *public*
- The things on the inside that we cannot see are private
- Are the buttons "Water", "Juice", and "Soda" public or private?
- What do the buttons represent?

The inside mechanisms of the vending machine are not visible from the outside

Access Modifiers

- What we can see from the outside is *public*
- The things on the inside that we cannot see are private
- The "Water", "Juice", and "Soda" buttons represent public behaviors

Access Modifiers

- The "Accelerate" button would be the gas pedal of a car
- The "Decelerate" button would be the brake of a car
- Note: We cannot see the private member variables "speed", "year", and "color"

- Private member
 - Only visible from inside the object
 - Cannot be seen from "outside"
- Public members
 Visible from the outside
- Now look at the class definition again:
 Look for the public members
 Look for the private members

Access Modifiers

```
public class Car
Ł
   // Attributes
                                Member variables are generally
   private int year;
                                       declared private
   private int speed;
   private String color;
                                Member methods are generally
   // Behaviors
                                       declared public
   public void Accelerate() {
      speed = speed +10;
   }
   public void Decelerate() {
      speed = speed - 10;
   }
}
Public and Private Members
```

private keyword

- Used for most instance variables.
- private variables and methods are accessible only to methods of the class in which they are declared.
- Declaring instance variables private is known as "data hiding".
- public keyword
 - Used for most methods.
 - Public methods are accessible outside the class.

 If the private members cannot be seen from the outside then how do we change them?

Use get/set methods to change private member variables.

- private instance variables
 - Cannot be accessed directly by clients of the object.
 - Use set methods to change the value.
 - Use get methods to retrieve the value.

Get and Set Methods

}

// Attributes
private int year;
private int speed;
private String color;

Get/Set methods of the Car class

// Behaviors
public int GetYear() { return year; }
public int GetSpeed() { return speed; }
public String GetColor() { return color; }

public void SetYear(int newYear) { year = newYear; }
public void SetSpeed(int newSpeed) { speed = newSpeed; }
public void SetColor(String newColor) { color = newColor; }

// Accelerate and Decelerate not shown

Get and Set Methods

Real World Example of Public vs Private

Think of how a supermarket is setup.

- The supermarket can be divided into two main areas:
 - Main Floor
 - Stock Room
- Which area do customers or "clients" have access to?

Public Vs Private

 Which area do customers or "clients" have access to?

ANSWER: MAIN FLOOR

Public Vs Private

If a customer wants something that is in the stock room how can they get it?

Public Vs Private

 If a customer wants something that is in the stock room how can they get it?

ANSWER: Ask a worker to get it for you. They have access to the stock room.

Public Vs Private

Now think in terms of a Java class.

- What are the <u>public</u> areas of a Java class more similar to: Main floor or Stock room?
- What are the *private* areas of a Java class more similar to: Main floor or Stock room?

Public Vs Private

Now think in terms of a Java class.

 What are the *public* areas of a Java class more similar to: *ANSWER: Main floor*

 What are the *private* areas of a Java class more similar to: ANSWER:
 Stock room

Public Vs Private

 If a "client" of a Java class wants to get something from the private area of a class how can she get it?

Public Vs Private

 If a "client" of a Java class wants to <u>get</u> something from the private area of a class how can she get it?

ANSWER: Use a get method.

Any method defined on a class has access to all member variables and member methods of that class (this includes the private variables and private methods).

Public Vs Private

- Local Variables Declared in the body of method. Can only be used within that method.
- **Instance Variables** Declared in a class declaration but not in a method. Each object of the class has a separate instance of the variable.

